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Novozhilov'.s quasistatic brittle fracture criterion is used to determine the direction angle of the branch of a crack with closed 
surfaces at the interface of two anisotropic bodies. The asymptotic form of the elastic fields near the crack tip is investigated 
and corollaries of Novozhilov's criterion are derived in an asymptotic formulation. Normalizations of the singular solutions, which 
have been adapted to the force and deformation fracture criteria, are discussed. In particular, it is established that, in the case 
of general anisotropy, there is no oscillation of the crack surfaces which can appear in the solution of the linear problem for an 
open crack. @ 2005 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a planar composite body ~ = ~+ u f~-, each of the parts of which is homogeneous and 
anisotropic. Along the interface line "F° = 0f~+ n 0£2-, which lies on the xl axis of Cartesian coordinates 
x -- (xl, x2), there is a crack (a cut) M ° which, to be specific, is a boundary crack. We will place the origin 
of coordinates O at the crack tip and denote the polar coordinates with polar axis directed along the 
prolongation of the crack by (r, q~), that is, r = I x I and q~ ~ (-re, r 0. We will assume that there is complete 

bonding of the materials in the section F ° = T°VI//°. The displacement vector u-* = (ur, u~) and the 
normal stress vector ~y(2)± = (cy~l, ~2)  are continuous. 

It is well known (see [1-9], etc) that the power solutions (the displacement fields) 

U(x)  = r A ~ ( t p )  (1 .1)  

of the model problem of a composite plane with a semi-infinite cut, which describe the behaviour of 
the elastic fields close to the tip of an open crack, can have complex exponents A = +-i7 + 1/2, 7 > 0. 
In this case, the solution of the linear problem in the theory of elasticity is characterized by the 
overlapping of the crack surfaces for any sign of the stress intensity factor. This makes its physical 
interpretation difficult, and is indicative of the need for a complete (non-linear) solution of the Signorini 
problem which includes the formulation of unilateral bonds and enables us to determine the contact 
set which is previously unknown. However, there are also other approaches to eliminating the above- 
mentioned contradiction. The first approach [10, 11] ignores the overlapping of the crack surfaces since, 
according to calculations, in ma W cases it is localized in an extremely small neighbourhood of the tip, 
far from which the deviation from the contact solution is insignificant. The second approach [12-14] 
also retains the linear defining relations but artificially introduces a contact zone at the mouth of the 
crack and suggests a technique for calculating the length of this zone for certain specific problems 
concerning a composite isotropic plane with a cut. In this paper, an analogous situation is considered 
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and it is simply assumed that, at the mouth, the crack surfaces overlap. However, the subject of the 
investigation is the singularities in the elastic fields and their effect on the quasistatic fracture process. 

In order to answer many of the attendant questions, it suffices to study the model problem of a 
composite plane with a semi-infinite cut M = {x: xl < 0, x2 = 0}, that is 

+ + + + 
--O10-/k(U-;  X ) - - O 2 0 - 2 k ( U - ;  X) = O, X e  ~ 2  = {X: "bY2>O } (1.2) 

+ + 1 
u; (x  l, O) = U-k(x 1, 0), 0-2k(U ; X 1, O) = 0-2k(U-; Xj, 0), X 1 e N+ = (0, +~,,)" k = 1, 2 (1.3) 

u~(x~, o) = u-2(x~, 0), 

xl ~ ~l  = (_~,  o) 

+ + + + 

0"22(/,/ ; Xl, O) = 0-22(U-; Xl, 0) ,  0-12(/,/-; Xl, O) = O, 
(1.4) 

Here 

0-+ (u +) = A +-e(u +-) (1.5) 

+ + 
0-]k are the Cartesian components of the stress tensor, 0-- andA -+ are the elastic moduli tensors, which 
are constant and possess the usual properties of positiveness and symmet~_~ and ~(u) is the s!rain tensor 
with the components ejk(U) = (OjUk + OkUj)/2 or 3j = O/Oxj (j = 1, 2). I fA = A- in Hooke s law (1.5), 
then the plane is found to be homogeneous, and the total bonding conditions (1.3) can be omitted. 
Relations (1.4) mean that the surfaces M_+ of a semi-infinite crack are in contact without friction. We 
emphasize that the following condition of "compressive stresses", which attributes a physical meaning 
to the solution of problem (1.2)-(1.4), is required in the a posteriori verification 

+ + , ~1 
0-22(u ;x  1,O) = 0-22(u'x 1 ,0)<0,  x 1~ _ (1.6) 

In Section 2 the exponents of the possible power solutions are determined (the integers and half- 
integers are real numbers, that is, no oscillation of the closed crack surfaces occurs during loading, but 
this does not contradict the formulation of the problem) and the number of linearly independent 
solutions (1.1) with the same exponents is found. Normalizations of the singular solutions are discussed 
in Section 3 and it is verified that the main singularity in the stresses in a homogeneous plane satisfies 
the physical condition (1.6) (the left-hand side is equal to zero) and a hypothesis is proposed concerning 
the conditions under which it holds in the case of the composite plane. Sections 4 and 5 are concerned 
with the application of the fracture criterion proposed by Novozhilov in [15]. 

We will now explain the reasons for choosing this criterion. The introduction of a time-like loading 
parameter, which is necessary from the very beginning when formulating the quasistatic fracture problem, 
requires an a posteriori analysis of the shape of the free surface which has been formed anew. Hence, 
in view of the contact of the crack surfaces which is postulated, the model problem of a crack with a 
small germ has to be solved in a complete formulation which admits of the surfaces of the main crack 
to be separated and the surfaces of the Branch crack to come in contact. An explicit solution or detailed 
information about it is required, and these are unavailable up to the present time. The methods [16] 
of analysing Signorini problems for bodies with cracks and the formulae in [17, 18] for the increment 
in the potential energy of deformation as a consequence of the propagation of a rectilinear crack with 
contacting surfaces do not enable one to determine the direction angle of the crack branch. Moreover, 
it follows from the subsequent results that, in the case of an isotropic body, a shear load, which generates 
singularities in the stresses at the tip, leads to a deflection of the crack but, under normal loading, which 
stimulates rectilinear development of a crack, the stresses remain bounded and the leading term in the 
energy increment [17, 18] becomes zero. 

Novozhilov's criterion remains an a priori criterion even after the introduction of a time-like parameter, 
and this property of it is used to determine the required angle and to predict the possibility of branching. 
Furthermore, the well-known criteria for the maximum breaking stresses and the absence of shear 
stresses follow from the asymptotic formulation [19] of the criterion (see Section 5). 

2. P O W E R  S O L U T I O N S  

In the case of arbitrary anisotropy, a direct calculation of the exponents A in formulae (1.1) is hardly 
possible. An approach [20] (see also [21, Ch. 7], and [22, Section §7]) has been suggested which, for 
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an extensive class of self-adjoint elliptic boundary-value problems, enables one to determine the exponents 
A for all possible power solutions (1.1) (but not their angular parts ~). Initially developed for differential 
operators with constant coefficients, it was subsequently adapted [9] to the case of piecewise-constant 
coefficients with discontinuities in the prolongation of the crack. To sum up, it was established that the 
exponents A are either integers A = m or they have the form A = iyn + m/2  and, moreover, the set of 
imaginary parts {Y1, .--, 7N} is independent of m e 77 = {0, _+ 1, _+2,... }. The shortcoming of the approach 
discussed in [20] lies in the impossibility of determining the conditions under which all the exponents 
A turn out to be real (what has been said does not, however, refer to problem (1.2)-(1.4)). The fact 
that the exponents A are real for a crack in a homogeneous anisotropic solid was proved for the first 
time in [23] using an analysis of the corresponding boundary integral equations. Results which are similar 
in their formulation but more profound in the case of general elliptic systems with the same boundary 
conditions on the crack surfaces were established later in [24]. At the same time, the methods developed 
in [24] are not suitable for a composite solid. 

The method we proposed in [9, 20] is based on certain considerations, the main one of which can be 
referred to as differentiation along a crack: the derivative of power solution (1.1) 

01U(x) = r A- l~(q))  (2.1) 

remains a power solution of problem (1.2)-(1.4), and • ,  0 provided U is not a function of the single 
variable x2. Together with the general results of the theory of boundary-value problems in domains with 
piecewise-smooth boundaries (see the key papers [25, 26] and, for example, the monograph [21]), linkage 
of the power solutions (1.1) and (2.1) leads to the following relation for the set ]~ of exponents of the 
non-trivial power solutions 

A ~ Z ~ - A e Z ,  A c E t A t E ,  A e Z ~ A - I ~ Z  (2.2) 

(the bar denotes a complex conjugate). We note that the first two expressions of (2.2) follow respectively 
from the formal self-adjointness of problem (1.2)-(1.4) and from the fact that the coefficients are real 
(the tensors A -  in Hooke's  law (1.5)). The last assertion of (2.2) is required in the additional line of 
reasoning, which will be presented below. 

A further important aspect is the polynomial property [22] of a system in the theory of elasticity. The 
elastic energy functional only degenerates for rigid displacements which are vector polynomials of the 
variablesxl andx2. This guarantees the following assertion (see [21, Theorem 6.1.2] and [22, Assumption 
(2.3)1) 

A~  E, ReA = 0 ~ A  = 0 (2.3) 

At the same time, the power solutions (1.1) with a zero exponent A are rigid translational displacements, 
1 2 in particular, the unit vectors e = (1, 0) and e = (0, 1). Furthermore, there are exactly two linearly 

independent logarithmic-power solutions 

eJlnr+~-J(g~), j = 1,2 (2.4) 

They generate forces concentrated at the point O. Taking account of formulae (2.2) and (2.3), we will 
now show that only the real exponents, and this means the integer exponents of the non-trivial power 
solutions (1.1), are located on the lines {A e C : ReA = m E 77}. 

The next stage is to verify that none of the exponents being discussed are in the strip {A e C : 
0 < ReA < 1/2}. In the case of problem (1.2)-(1.4), it literally repeats the arguments presented earlier 
[9, Section 4] and will not be reproduced here. We note that, here, use is made of assertions (2.2), the 
integral formulae for the stress intensity factor and, also, the monotonic decrease in the potential energy 
of deformation functional in the case of a growing crack, but for a fixed load. Returning once again to 
the technique of differentiation along a crack, we conclude that 

Z = { m , m + - i Y n + l / 2 : m e  77, n =  1 . . . . .  N}  (2.5) 

Here  {Y1, - . . ,  YN} is a set of numbers which depends on the elastic moduli of the materials. It will be 
shown later than N = 1 and Y1 = 0. 

We will now determine the number of linearly independent power solutions for a fixed real part of 
the exponent )~ ~ ~2. The points )~ ~ ~ are the eigenvalues of a certain operator pencil in the arc (see 
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[25], and, also, [21, §3.5] and [9, Section 2]. By a continuous change in the tensors (-re, r 0 in Hooke's 
law (1.5), this pencil is transformed into the pencil corresponding to problem (1.2)-(1.4) concerning 
an isotropic, homogeneous plane with a cut M, for which the following is known (see, for example, [13, 
27]): first, in the case when A = 1, there are three linearly independent solutions, which are given by 
the formula 

rl~((p)  = ( a l x l - a o x z ,  a2x2 -aox l ) ,  aq~ ~ (2.6) 

and, second, if ReA = 1/2, then A = 1/2, and any power solution with this exponent is proportional to 
solution (1.1) in which A = 1/2 and 

1 3q0 
¢~r(q)) - ~__ ( 3 s i n - -  - (5 - 8v)sin~) 

4 4 2 ~ g \  2 

1 ( ,.3q~ (7 8v)cos~) 
~e(q~) - 4 , f~g-  k 3c°s-W - - 

(2.7) 

Here, )~ _> 0 and g > 0 are Lam6 constants, v = ~,[2@ + g)]-i is Poisson's ratio (we are dealing with 
plane deformation). Note that formulae (2.7) indicate the polar components of the angular part • and 
the vector (2.6) is written in a Cartesian system of coordinates. Finally, logarithmic-power solutions with 
exponents A = 1 and A = 1/2 do not exist. 

Since, according to what has been proved previously, the eigenvalues A cannot leave the straight lines: 
{A: ReA = m + 1/2} or the set 7/, and the theorem in [28] concerning the preservation of the full 
multiplicity of the spectrum under a continuous change in the pencil asserts that, for arbitrary A -+ in 
the law (1.5), only a single exponent A1/a lies on the line {A: ReA = 1/2} and the exponent A1 -- 1 
corresponds to three linearly independent power or logarithmic-power solutions. On account of the 
second assertion of (2.2), A m = 1/2 (when A1/2 is complex, a second exponent J~kl/2 :~ A1/2 will appear 
on the same line), and the third and first assertions of (2.2) establish that Y1 = ... = 7N = 0 and that 
only one power solution, that is, N = 1, corresponds to each half-integral exponent A = m + 1/2. 

It remains to consider the integral points from the set (2.5). In the isotropic case~ among the solutions 
(2.6), there is a rotation (al -- a2 -- 0) and, also, two solutions U. for which (Y~2 (Uj) = 0 and (Y~k (Uj) = J 
8jk (J, k = 1, 2). Similar solutions can also be constructed in the case of an anisotropic composite plane. 
They are found to be piecewise linear and form a basis in the linear manifold of the power solutions 
with exponents A = 1. There are as many of them as in the isotropic situation, that is, other solutions, 
in particular, logarithmic-power solutions with the exponent A = 1, do not exist according to what has 
been proved above. Consequently, there are also no logarithmic-power solutions in the case of the 
exponents A = m > 1 (the lnr factor cannot be eliminated by the differentiation ~m-1/Ox~- 1). Among 
the named piecewise-linear solutions, there is one which depends solely on x2 and which vanishes after 
differentiation with respect to Xl, for example, a0 = aa -- 0 in the definition of (2.6). Only two, and not 
three, polynomial solutions e 1 and e 2 can therefore be found for the exponent A = 0. Solutions (2.4), 
which contain lnr, are not obtainable from the other solutions by differentiation along the crack. 

+ 2 + + //~ • Suppose m ¢ 0, 1, a -  e ~ and U-(x)  = a - x  2 are solutions of problem (1.2)-(1.4). Then, according 
to the equilibrium equation (1.2), ~2~k(U---) = 0, and this means that the equalities cy~(U +) = 0 (k = 
1, 2) hold which, together with the obvious formulae 

E l l ( U  + ) + _+ m - l / ~  + _+_ m - I  --= 0 ,  E I 2 ( U - )  = E 2 1 ( U  +)  -- m a l x  2 t z ,  E 2 2 ( U -  ) = m a 2 x  2 

contradict the fact that the tensorsA +- are positive definite. In particular, this fact, together with formula 
(2.4), completes the verification of the third statement of (2.2). Furthermore, not one non-trivial solution 
with an exponent A = m > 1 is eliminated by the differentiation O/Oxl and, therefore, by virtue of the 
general results in [26] and the third assertion of (2.2) (also, see [21, Assumptions 1.2.6 and 3.5.4]), exactly 
the same number of solutions (1.1) is found for A -- m and A = -m as in the case when A = 1. 

The main properties of the spectrum (2.5) have been studied. The set ~ consists of integral and half- 
integral numbers when N = 1 and YI = 0 in formula (2.5). When m ~ 7/, three linearly independent 
power solutions correspond to the exponent A = m ~ 0 and there are no logarithmic-power solutions. 
If A = 0, then solutions (1.1) are constant vectors, but there are a further two solutions (2.4). In the 
case when A = rn + 1/2 which is discussed later, there is only one power solution (1.1). 
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3. T H E  N O R M A L I Z A T I O N  OF T H E  S I N G U L A R  S O L U T I O N  

The solution of problem (1.2)-(1.4) 

U(x) = rl/2~(q0) (3.1) 

with an exponent A = 1/2 and angular parts (2.7) corresponds to a second (shear) mode for a 
homogeneous isotropic plane with a crack. In this case, 

+ + 
O 2 2 ( U - ;  Xl, + 0 )  -- 0 ,  x 1 < 0 (3.2) 

and the factor K in the asymptotic form of the elastic fields around the crack tip 

u(x) = c+KU(x)+O(r) ,  o ( u ; x )  = Ko(U;x)+O(1),  r--)+O (3.3) 

is found according to the classical definition of the stress intensity factor 

K = K n = lim (21tr)l/2012(u; r, 0) (3.4) 
r--) +0 

The correctness of equality (3.2) is next verified in the case of an anisotropic homogeneous plane, and 
this means, by virtue of representations (3.3), that the normal stresses along the contact line remain 
bounded. In other words, for any load, the crack can be closed by the imposition of an additional 
sufficiently large uniform compressive stress field. Hence, in homogeneous mountain masses, where 
compressive stresses predominate, fracture occurs when the surfaces of cracks are in complete contact. 

In order to verify the consistency of definition (3.4) in the case of a composite anisotropic plane, we 
will use the line of reasoning previously described in [9] and ascertain that it is possible to normalize 
the angular part • of the power solution (3.1) with the relation 

+ + 
oT2(U-; r, 0) = (2rcr) -1/2 (3.5) 

If it is assumed that G~2(Ue; r, 0) = 0, then the pair U +, U- is found to be a solution of equilibrium 
equation (1.2) with uniform mixed coupling conditions along the interface line 

+ 
U2(x1, 0) U2(x1, 0) ,  + + + + = (I22(U , Xl, 0) = O22(U-;  Xl, 0) ,  (Yl2(U-; Xl, 0) = 0 ,  x 1 e ~ (3.6) 

In view of the polynomial property [22] and the formal self-adjointness, problem (1.2), (3.6) is an elliptic 
problem, that is, the solution U = U +, which is bounded in the neighbourhood of the point O, is found 

1/2 [29] to be smooth, and therefore does not possess a singularity O(r ). The resulting contradiction 
establishes that the shear stresses do not vanish along the crack, that is, condition (3.5) can always be 
complied with. 

The normalization (3.5), which has been adapted to the force criteria of fracture, can be replaced by 
the following normalization which accompanies the deformation criterion of fracture 

[Ul ] ( - r  ) = 8(2i~)-1/2brl/2 (3.7) 

Here, [Uk](Xl) = gk-k (x1, 0)  -- U~:(X1, 0)  is the discontinuity in the displacements on the crack surfaces 
M, and b + + = (B 11,11 + B~I, 11)/2 and B~k, pq are elements of the compliance tensors, which are inverse to 
the rigidity tensors A + in Hooke's  law (1.5). In the case of an isotropic homogeneous plane, 

+ 
b = B~l, 11 = [ 4 g ( ~ + g ) ] - l ( ~ + 2 g )  (3.8) 

and the factor on the right-hand side of equality (3.7), which had originally been missing in [30], is chosen 
such that the angular parts (2.7) satisfy condition (3.7) with the coefficient (3.8). 
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We can now explain the reason for the behaviour of the element Gll ' 11 in formula (3.7) and the 
unexpected behaviour of G12 ' 12. Suppose the plane is homogeneous, that is, A + = A- in Hooke's law 
(1.5). By virtue of relations (3.1) and (3.7) 

0 -1/2 
[ O l l ( U ) ] ( - r  ) = 0.11 r , r-1/2[Ell(U)](-r)  = _4(2~)1/2Gr-1/2 

We emphasize that [0.2k(U)](-r) = 0 (k = 1, 2) according to the coupling conditions (1.3). Denoting 
the second rank tensor with the Cartesian components ell = 1 and ejk = 0 when j + k > 2 by e, we 
calculate the factor 0.~1 

0 -1 /2  
0.11r e = [o(u)](-r)  = a[Iz(U)](-r) 

0 - I / 2  0 -I/2eA-1 e 0.11Gll, ll r = 0.11 r = e[e(U)](-r) = [ell(U)](-r)  

SO, O"01 = -4(2r0 -1/2 and the normalization (3.7) is equivalent to the following 

[0.11(U)l(-r) = -4(2/tr) -m (3.9) 

Since a root singularity in the stresses is characterized by just a single stress intensity factor and the 
normalization (3.5) and (3.7) are in fact equivalent, the fracture criteria, operating with the stress intensity 
factor K can be considered as both force and deformation criteria. Moreover, according to equality 
(3.9) for a homogeneous solid, the stress intensity factor L, which corresponds to the "deformation 
normalization" (3.7), is defined as 

L = _1 l im (2gr)l/2[0.11(u)](-r) 
"l 'r  -~  +0 

(3.1o) 

We emphasize that, on the right-hand side of (3.10), there is a discontinuity in the s t r e s s e s  0.11(U) on 
the crack surfaces which, according to what has been proved, does not vanish. 

In the case of an open crack, that is, when the coupling conditions (1.3) are replaced by the boundary 
conditions 

+ + 1 
0 . 2 k ( / / - ;  X l ,  O )  ---- O, X 1 ~ N+, k = 1, 2 (3.11) 

there are [9] two solutions, U 1 and U 2, of the form of (1.1) with exponents A = -+iy + 1/2. If Y = 0 and 
there is no overlapping of the crack surfaces, then, using the reasoning which led to formula (3.5), we 
can convince ourselves of the possibility of the deformation normalization of the basis {U 1, U 2} of power 
solutions (1.3) of problem (1.2), (1.4), (3.11): 

[ U~] (-r) = 8 (2rr)-mbrl/25j, 3 - k (3.12) 

By virtue of boundary conditions (3.11) and equalities (3.12) when j = k = 2, the solution U 2, which 
corresponds to the shear mode, satisfies relations (1.2)-(1.4) and (3.2), and this means that it also satisfies 
he physical requirement (1.6). 

If, however, 7 ~ 0, then not one non-trivial linear combination W = Cl U1 + c2 U2 can have a zero 
discontinuity [0.22(W)](-r) on the crack surfaces. Actually, the field Wwould otherwise be found to be 
a solution of problem (1.2)-(1.4), but possesses complex homogeneity exponents A which would 
contradict what has been proved in Section 2. On the other hand, when 74 0, solution (3.1) of problem 
(1.2)-(1.4) does not satisfy condition (3.2), or else it becomes a solution of problem (1.2), (1.4), (3.11) 
with an exponent A ~ ___i 7 + 1/2. The violation of equality (3.2) means that solution (3.3) only satisfied 
the physically correct condition of compressive stresses (1.6) in the case of a specific sign of the stress 
intensity factor K. 

The transformations, carried out in the comment presented above, enable us to propose the following 
hypothesis: in the case of boundary conditions (3.11), all of the exponents A of the non-trivial power 
solutions (1.1) are real if and only if the equality 

B ÷ (3 .13)  I t ,  11 ---- Bl1,11 

is satisfied. In the case of isotropic materials, condition (3.13) is identical to Dundurs' condition [31]. 
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4. N O V O Z H I L O V ' S  C R I T E R I O N  

The criterion of quasistatic fracture 

d 

l I~ee ( r ,  ¢O)le=odr = 0 c 

0 

(4.1) 

proposed by Novozhilov [15] for determining the equilibrium state of cracks, was adapted in [19, 32-34] 
for finding critical loads in the case of different load concentrators. On the left-hand side of relation 
(4.1), integration is carried out over the segment I(0) = {x: r e [0, d], q~ -- 0} of length d, starting from 
the tip O. 

Since the material is not assumed to be isotropic and homogeneous, we assume that its characteristics 
at the point O d = d(0) and (Yc = C~c(0), the characteristics size of the medium (the grain size [19], for 
example) and the critical stress (the theoretical strength [35]) depend on the direction 0 e (-re, ~) of 

2 the section I = I(0). Within each of the half-planes R_+, that is, when _+0 c (0, ~), it is reasonable to 
take these relations as being smooth, but discontinuities of the first kind are permitted in them at the 
point 0 = 0 (the interface line). If the bonding is unreliable and the theoretical strength of the materials 
in R 2 significantly exceeds the magnitude of ~c(0), then rectilinear propagation of the crack is found 
to be preferable [36]. In the remaining cases, the question of the determination of the angle of deviation 
of the crack branch from the OX 1 axis becomes paramount. 

We will now consider a bounded composite body ~ = f~+ u ~_ with a boundary crack M °. Suppose 
that, when there are not bulk forces, a loadp(x; "0 is applied to the external surface 3~2VF °, which depends 
on the dimensionless time-like parameter ~ (which is strictly monotonic with respect to the real time 
t), and the rate of change of'c is assumed to be small compared with the propagation velocity of elastic 
waves divided by the characteristic dimension I of the body ~ (by the length of the crack, for example: 
not to be confused with the parameter d ~ l). This formulation enables us to neglect the inertia forces 
justifiably and to formulate the quasistatic fracture problem in the following manner: it is required to 
determine the instant "c = "c, at which equality (4.1) is satisfied for any angle 0 but, when "~ < "c,, the 
left-hand side of (4.1) is strictly less than 6c(0) for any 0. The corresponding loadp(x; "c,) will be the 
critical load. We note that, in the case of simple loading, the above-mentioned formulation, which is 
suitable for many fracture criteria, can be derived from the dynamic fracture criterion [34]. In other 
words, the function 

where 

(-~, re) ~ 0 ~-> F (z , ;  O) - gc(O) (4.2) 

d(0) 
1 

F('c; O) = d(0) I ~ ( ' c ;  x)l~=ods 
0 

(4.3) 

must reach a global maximum (equal to zero) at one or several points but remains negative for all 0 
for "c < "c,. In the case of a multiplicity of the zeroes of function (4.2), the appearance of several branches 
would be expected and one speaks of the branching of the crack. 

We will now consider the + case of a homogeneous (A = A-) plane for which the quantities d(O) and 
(Yc(O) depend continually on the angle O. We fix O and introduce Cartesian coordinates (s, n), directing 
the s axis along the section I(O). Using equilibrium equations (1.2), rewritten in the new coordinates, 

- c 3 ~ , ,  - 3 , , ~ , , ,  = O,  - 3 , ~ , , ,  - 3 , ,~ , , , ,  = 0 ( 4 . 4 )  

we transform the derivative F '  of function (4.3) with respect to the variable 0 in the following way 

d ' ( 0 ) _ . .  0)  + d ( 0 ) ,  0)  + d-~)J(z; O) F'(~; 0) - d - ~  e~'c, d'(0)G~('c; 

d d d d 
3 

. . i . = j s  - 

0 0 0 0 
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As a result, we obtain the relation 

d(O) 

F'(,; 0) = ~ J" (O.s(~; x)-~(0)O°s(,; x)}l~ = ods- 
0 

- {O~s(~; x) - d'(O)CYns('r:; x)}[ r = d(0), cp = 0 = 

D(O) I OnN("Cax)IW=O--O"N('C;X)I"=d(O),w =° ,D(O) = 1 

o 

+ rd'(o)]~) -''2 

(4.5) 

By N = N(0), we mean a unit vector which is tangential to a graph of the function r = d(q~) at the point 
q0 = 0. Its projections onto the s and n axes have the form 

N s = D(O), N.  = -D(O)d'(O)/d(O) 

So, in the formation of a branch, which starts out from the tip 0 in a direction e, expression (4.5) at 
the instant "c = z,  is identical to the derivative go(O), that is 

d(O) 

1 =0 dS-OnN(7'*; X)lr=d(O),~p 0 D(O)o'c(O) d(O) I OnN('~*; x) l~  = = 
o 

(4.6) 

If the strength properties are isotropic (the elastic properties of the body can still retain anisotropy), 
then d'(0) = 0, #c(O) = 0, and the condition which has been found simplifies to the condition 

d 

6r~(~,;  d, 0) = dlOr~(l:,; r, O)ds 
0 

(4.7) 

In other words, the shear stress at the end of the section I(0) is identical to the mean value of this stress 
over the section. In the case of simple loadingp(x; "c) = "cp°(x), the angle 0 is independent of the loading 
instant, and the argument ~, can be removed from relations (4.6) and (4.7). 

Note that conditions (4.7) and (4.6) are only necessary conditions. Thus, for example, the crack 
surfaces are stress-free, that is, (~rq~(r, ---g) = 0, and equality (4.6) is satisfied for 0 = _+n. However, 
~e( r ,  _+n) = 0 according to relation (3.2) and requirement (4.1) is clearly violated. On calculating the 
second derivative of function (4.3) in the case of constant d and transforming it, taking account of 
equilibrium equations (4.4), we have 

(4.8) 

d d 

1 , = 1 , 0 G  0 l f s 0  = a J 3 J ~  '°l°=0ds-~°'°l.=~.°=0 = 3J ~s"l.=0ds-d~°'"ls=~. F" 0 

0 0 

d d 

= .=od, 4Ossts= .=o =   O.slo' =ods 
o o 

At the point of a strictly local maximum, the quantity F"('c,; 0), which only contains tensile stresses 
for directions perpendicular to the section I(0), is found to be negative. The expression for the second 
derivative of function (4.2) in the variables d(0) and Zc(0) is extremely lengthy. Nevertheless, as in the 
case of a composite plane, the necessary and sufficient conditions for local maxima when _+ 0 e (0, n) 
can be employed, not forgetting to include 0 = 0 in the number of "suspicious" points. 

5. C O N S E Q U E N C E S  OF N O V O Z H I L O V ' S  C R I T E R I O N  

If the dimension d is intrinsically small, then, with a certain error, the stresses (y~('c,; r, q0) and 
or~('c,; r, q~) in formulae (4.1) and (4.7) can be replaced [19] by the leading terms r-1/2~ee(~,; q~) and 
r-1/2~r~('c,; q~) of their asymptotic expansion near the crack tip. As a result, the absolutely simple 
conditions 



A crack at the interface of anisotropic bodies 481 

~d E,t0(x*; 0) = (5c (5.1) 

Xr,p('C*; 0) = 0 (5.2) 

follow from equality (4.1) and, in the case of isotropic strength properties, also from equality (4.7). It 
is logical to refer to relation (5.1) as the asymptotic form of Novozhilov's criterion. After adding the 
condition for a global maximum at the point 0, it resembles the well known criterion for maximum tensile 
stresses and the necessary condition (5.2) is the criterion "Kn -- 0" (a crack develops in the direction 
in which there are no shear forces). However, in the case of an open crack in an isotropic body, it is 
well known [30, 37, 38] that the above-mentioned criteria in the a posteriori formulation (the stress 
intensity factor K1 is the largest among those possible and the stress intensity factor Kn at the tip of 
the small crack branch is equal to zero) indicate a direction which is different from that obtained from 
formulae (5.1) and (5.2). 

The sufficient condition for a local maximum F"(x,; 0) < 0 transforms, according to the calculation 
(4.8), into the inequality 

0) < 0 

Hence, the direction in which a crack develops is characterized by the maximum breaking stress 
r-1/22~('c,; 0), by zero shear stress r-1/2Er~(~,; 0) and by a negative longitudinal stress r-1/2ZrdZ,; 0). 

We note that, in the paper by Morozov and Novozhilov [19], which analyses the direction of 
propagation of an open crack in an orthotropic material, it was not Novozhilov's criterion itself which 
was used but its asymptotic form (5.1). Here, the parameter d was assumed to be constant and the 
quantity (5c(0) was taken equal to (5~sin20 + (scyCOS20, that is, the reasons for the observed [19] deviation 
of the crack from a rectilinear path are solely due to the variability of the strength characteristic Oc. 

The need to involve polynomial asymptotic behaviour in the criterion for an incubation time [33], 
which extends criterion (4.1) to the case of dynamic fracture, is well known [34]. Since, according to 
equality (3.2), the existence of contact between the crack surfaces is not defined in many cases by the 
leading term in the asymptotic form of the stresses, taking account of the smaller terms becomes ever 
more important. We shall estimate the error in calculating the direction angle of the crack branch in 
homogeneous isotropic solid when the asymptotic criterion (5.1) is used. 

The', expansion of the stress field close to the crack tip O takes form 

)_i7~1 _ ~ }  0 . 2 0 2 1 K r . q0+3si n +(511 sin q0+(522c°s (p+O(rl/2) (st0~(x) -- ~i(2x-- ~ 3sin 2 (5.3) 

vt  o o  (sr~(X) - 4(2~r)V2 cos +3cos  +((522-Gll)sincpcosq~+O(r 1/2) (5.4) 

0 0 Here K is the stress intensity factor, which is assumed to be non-zero, (5311 and (522 are finite components 
0 < of the stresses at the crack tip, and (522 - 0, in accordance with formulae (1.6) and (3.2). It is well known 

that Novozhilov's criterion indicates the following critical stress intensity factor and direction angle 

]K*] ~(sc(ona)l . . . .  1/2, O* 1 
= = -2signKarcsin = (5.5) 

43 

Assuming that the magnitude of 8 = 1K1-11(5°2 - (53°11 dl/2 is small and using the necessary condition 
(4.7), we obtain the leading term of the correction to the direction angle 

1 4 . . . .  1 / 2 1 .  0 0 
0* = -s ignK 2 a r c s i n ~  + ~-~(.~rca) ~((522- (511) 

J 
(5.6) 

We now calculate the left-hand side of equality (4.1) in the asymptotic form (5.3) when 0 = 0* and find 
that fracture does not occur when the following inequality is satisfied 

4 -1/2 1 o o 
--~(2/~d) K + ~(8(511 + (522) < Gc 
43 

(5.7) 
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For  unchanged  K and (Y°22 _< 0 in the case of  a tensile (compressive)  stress along the crack, the direct ion 
angle decreases  (increases).  Naturally,  fo rmulae  (5.6) and (5.7) are approximate ,  and their  accuracy is 
de te rmined  by the quanti t ies ~2 and max{  [~ee(r, q))] + I~re( r, q~)}, where  ~ee and ~yre are the residues 
in expansion (5.3) and (5.4). r<_d 

We now re turn  to asymptot ic  Novozhi lov 's  criterion. One  amusing fact follows f rom formula  (5.2), 
which holds for  a crack on the axis of  elastic symmet ry  of a h o m o g e n e o u s  medium.  Since, by virtue of  
equali ty (3.2), the angular  par t  29e('c; q0) of  the failure stresses vanishes when  q~ = +re, it reaches a 
m a x i m u m  (or  min imum)  value at the point  % within the interval (-r~, r~). In this case, Z~r(--q~; q~.) = 0, 
and, consequently,  the angular  par t  of  the shear  stress must  change sign in the interval (-re, re) for  any 
anisotropic material .  It  has been  men t ioned  that, according to condit ions (5.1) and (5.2), for  branching 
of a crack it is necessary that  the angular par t  2re when r -1/2 should vanish at least twice within the interval 
(-re, re), changing its sign here  f rom plus to minus. Wha t  has been  said means  that  the funct ion Z , r  must  
have no less then  five zeroes in the section I-re, ~]. Naturally,  a third degree  ha rmonic  polynomial  of  
the variable q~/2 has no such proper ty .  So, branching of  a crack does not  occur  within the f r amework  
of  asymptot ic  Novozhi lov 's  criterion, that  is, in the case of  an intrinsically small p a r a m e t e r  d. For  the 
same reason,  a considera t ion of the b inomial  asymptot ic  fo rm of  the stresses (5.3) and (5.4) also does 
not  help to reveal  the possibility of  the branching of  a crack. This comple te ly  agrees with exper imenta l  
fact: quasistatic branching of  a crack (without the influence of dynamic effects) is not  observed in a 
h o m o g e n e o u s  isotropic brit t le material .  

The  scheme of  appl icat ion of Novozhi lov 's  cri terion which has been  descr ibed is also suitable in the 
case of  an open  crack. Naturally,  it is necessary to change the asymptot ic  fo rmulae  (5.3) and (5.4) and 

0 to put  G22 = 0 and introduce te rms  corresponding to the first (cleavage) m o d e  and having positive stress 
intensity factors/£1 > 0. 

This research was suppor ted  financially by the Russian Foundat ion  for Basic Research  (03-01-00835). 
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